对标Eureka的AP一致性,Nacos如何实现Raft算法

读懂这一篇,集群节点不下线

一、快速了解Raft算法

Raft 适用于一个管理日志一致性的协议,相比于 Paxos 协议 Raft 更易于理解和去实现它。
为了提高理解性,Raft 将一致性算法分为了几个部分,包括领导选取(leader selection)、日志复制(log replication)、安全(safety),并且使用了更强的一致性来减少了必须需要考虑的状态。

相比Paxos,Raft算法理解起来更加直观。

Raft算法将Server划分为3种状态,或者也可以称作角色:

  • Leader
    负责Client交互和log复制,同一时刻系统中最多存在1个。

  • Follower
    被动响应请求RPC,从不主动发起请求RPC。

  • Candidate

一种临时的角色,只存在于leader的选举阶段,某个节点想要变成leader,那么就发起投票请求,同时自己变成candidate。如果选举成功,则变为candidate,否则退回为follower

状态或者说角色的流转如下:

对标Eureka的AP一致性,Nacos如何实现Raft算法

在Raft中,问题分解为:领导选取、日志复制、安全和成员变化。

复制状态机通过复制日志来实现:

日志:每台机器保存一份日志,日志来自于客户端的请求,包含一系列的命令
状态机:状态机会按顺序执行这些命令
一致性模型:分布式环境下,保证多机的日志是一致的,这样回放到状态机中的状态是一致的

深入拆解类加载器,这样的姿势你还不懂吗?

Raft算法选主流程

Raft中有Term的概念,Term类比中国历史上的朝代更替,Raft 算法将时间划分成为任意不同长度的任期(term)。

对标Eureka的AP一致性,Nacos如何实现Raft算法

选举流程

1、follower增加当前的term,转变为candidate。
2、candidate投票给自己,并发送RequestVote RPC给集群中的其他服务器。
3、收到RequestVote的服务器,在同一term中只会按照先到先得投票给至多一个candidate。且只会投票给log至少和自身一样新的candidate。

关于Raft更详细的描述,可以查看这里,从分布式一致性到共识机制(二)Raft算法

二、Nacos中的CP一致性

Spring Cloud Alibaba Nacos 在 1.0.0 正式支持 AP 和 CP 两种一致性协议,其中的CP一致性协议实现,是基于简化的 Raft 的 CP 一致性。

如何实现Raft算法

Nacos server在启动时,会通过RunningConfig.onApplicationEvent()方法调用RaftCore.init()方法。

启动选举

public static void init() throws Exception {
 
    Loggers.RAFT.info("initializing Raft sub-system");
 
    // 启动Notifier,轮询Datums,通知RaftListener
    executor.submit(notifier);
     
    // 获取Raft集群节点,更新到PeerSet中
    peers.add(NamingProxy.getServers());
 
    long start = System.currentTimeMillis();
 
    // 从磁盘加载Datum和term数据进行数据恢复
    RaftStore.load();
 
    Loggers.RAFT.info("cache loaded, peer count: {}, datum count: {}, current term: {}",
        peers.size(), datums.size(), peers.getTerm());
 
    while (true) {
        if (notifier.tasks.size() <= 0) {
            break;
        }
        Thread.sleep(1000L);
        System.out.println(notifier.tasks.size());
    }
 
    Loggers.RAFT.info("finish to load data from disk, cost: {} ms.", (System.currentTimeMillis() - start));
 
    GlobalExecutor.register(new MasterElection()); // Leader选举
    GlobalExecutor.register1(new HeartBeat()); // Raft心跳
    GlobalExecutor.register(new AddressServerUpdater(), GlobalExecutor.ADDRESS_SERVER_UPDATE_INTERVAL_MS);
 
    if (peers.size() > 0) {
        if (lock.tryLock(INIT_LOCK_TIME_SECONDS, TimeUnit.SECONDS)) {
            initialized = true;
            lock.unlock();
        }
    } else {
        throw new Exception("peers is empty.");
    }
 
    Loggers.RAFT.info("timer started: leader timeout ms: {}, heart-beat timeout ms: {}",
        GlobalExecutor.LEADER_TIMEOUT_MS, GlobalExecutor.HEARTBEAT_INTERVAL_MS);
}

在init方法主要做了如下几件事:

  1. 获取Raft集群节点 peers.add(NamingProxy.getServers());
  2. Raft集群数据恢复 RaftStore.load();
  3. Raft选举 GlobalExecutor.register(new MasterElection());
  4. Raft心跳 GlobalExecutor.register(new HeartBeat());
  5. Raft发布内容
  6. Raft保证内容一致性

选举流程

其中,raft集群内部节点间是通过暴露的Restful接口,代码在 RaftController 中。
RaftController控制器是raft集群内部节点间通信使用的,具体的信息如下

POST HTTP://{ip:port}/v1/ns/raft/vote : 进行投票请求

POST HTTP://{ip:port}/v1/ns/raft/beat : Leader向Follower发送心跳信息

GET HTTP://{ip:port}/v1/ns/raft/peer : 获取该节点的RaftPeer信息

PUT HTTP://{ip:port}/v1/ns/raft/datum/reload : 重新加载某日志信息

POST HTTP://{ip:port}/v1/ns/raft/datum : Leader接收传来的数据并存入

DELETE HTTP://{ip:port}/v1/ns/raft/datum : Leader接收传来的数据删除操作

GET HTTP://{ip:port}/v1/ns/raft/datum : 获取该节点存储的数据信息

GET HTTP://{ip:port}/v1/ns/raft/state : 获取该节点的状态信息{UP or DOWN}

POST HTTP://{ip:port}/v1/ns/raft/datum/commit : Follower节点接收Leader传来得到数据存入操作

DELETE HTTP://{ip:port}/v1/ns/raft/datum : Follower节点接收Leader传来的数据删除操作

GET HTTP://{ip:port}/v1/ns/raft/leader : 获取当前集群的Leader节点信息

GET HTTP://{ip:port}/v1/ns/raft/listeners : 获取当前Raft集群的所有事件监听者
RaftPeerSet

心跳机制

Raft中使用心跳机制来触发leader选举。心跳定时任务是在GlobalExecutor 中,
通过 GlobalExecutor.register(new HeartBeat())注册心跳定时任务,具体操作包括:

  • 重置Leader节点的heart timeout、election timeout;
  • sendBeat()发送心跳包
 public class HeartBeat implements Runnable {
        @Override
        public void run() {
            try {

                if (!peers.isReady()) {
                    return;
                }

                RaftPeer local = peers.local();
                local.heartbeatDueMs -= GlobalExecutor.TICK_PERIOD_MS;
                if (local.heartbeatDueMs > 0) {
                    return;
                }

                local.resetHeartbeatDue();

                sendBeat();
            } catch (Exception e) {
                Loggers.RAFT.warn("[RAFT] error while sending beat {}", e);
            }

        }
}

简单说明了下Nacos中的Raft一致性实现,更详细的流程,可以下载源码,查看 RaftCore 进行了解。源码可以通过以下地址检出:

git clone https://github.com/alibaba/nacos.git

对标Eureka的AP一致性,Nacos如何实现Raft算法

扫码关注公众号:架构进化论,获得第一手的技术资讯和原创文章

漫画 | 什么是散列表(哈希表)?

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享